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QUOTIENT POLYTOPES OF CYCLIC POLYTOPES 
PART II: STABILITY OF THE f-VECTOR 

AND OF THE k-SKELETON 

BY 

A. ALTSHULER AND M. A. PERLES 

ABSTRACT 

This paper is the continuation of an earlier paper on quotient polytopes 
C(v,2m)/F of cyclic polytopes and the associated quotient complexes 
~(  V, 2m )/J. Here, we study mainly what changes in the face J do not affect the 
/-vector of the quotient ~(V,2m)/J. In the last section we examine the 
corresponding question for k-skeleta, i.e., what changes in J do not affect the 
isomorphism type of skelk ~(V,2m)/J. 

7. Introduction 

In part I of this work we started to investigate the quotient polytopes 

C(v, 2m)/F of cyclic polytopes and the associated quotient complexes 

@(V,2m)/J. 
In this part we shall be dealing mainly with the following question: what 

changes in the face J do not affect the [-vector of the quotient ~(V,2m)/J? In 
the last section of this part (Section 12) we shall consider the corresponding 

question for k-skeleta, namely: what changes in J do not affect the isomorphism 
type of skelk ~(V,2m)/J? 

Let us first recall the definition of ~(V,2m)/J and its /-vector, and the 

notational convention associated with it. We assume that V- -{1 , . . . , v} ,  

v>2m_->2, and consider the circuit C(V), with edges {1,2},{2,3},..., 

{v - 1, v},{v, 1}.-~(V, 2m) consists of all the subsets of those 2m-subsets of V 

which contain only even blocks (see [1, Definition 3.1]). J is a separated subset of 
V, O<=lJl=j <=m, and 

@(V,2m )/J = {S C V\J  : S UJEE qg(V,2m)}. 

Let ~ = qg(V,2m)/J. Then f(~r)__ (.fo(~),"" ",[2m-j-~(~)), where 

~(~'[)= I{F E ff{:lF[ = i + 1}l. 
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The next definition is needed for the formulation of the main result of this 

part. 

DEFINITION 7.1. Let J be a fixed subset of V. 

(a) Two subsets A, B of V are similar if there is an automorphism of C ( V )  

(rotation or reflection) which maps A onto B. 

(b) For a natural number a, and x, y E J, let us write x ~ ,  y if the distance 

between x and y in C ( V ) i s  -<_a, i.e., if I x - y l _ - < ~  or I x - y l > - v - a .  
(c) Let - ~  be the transitive closure of ~ o  on J, i.e., x - ~ y  itt there is a 

sequence x = xo, x , , . . . , x ,  = y  of elements of J (t =>0), such that x~_,,~-%x~ for 

l<=i<=t. 
(d) The equivalence classes of J with respect to - ~  are called o~-blocks. 

(e) Two subsets J,, J2 of V are a-equivalent if there is 1-1 correspondence 

between the a-blocks of J, and those of J2, so that corresponding a-blocks of J] 

and -/2 are similar in the sense of paragraph (a) above. 

Figure 2 depicts a pair of 3-equivalent separated 8-subsets of V, each 

consisting of four 3-blocks. (] V] = 26.) 

Now we are ready to state the main result of this part. 

3-block J 
Fig. 2. 

5-block 

THEOREM 7.2. Suppose I V I = v > 2m >= 2 and 0 <= j <= m. I f  J and J' are 

separated j-subsets of V, and J, J' are (m- j+2) -equ iva len t ,  then 

f (@(V,2m )/J) = f(c~(V,2m )/J'). 

The proof of Theorem 7.2 falls into three parts. First, in Section 8, we deal 

with the "degenera te"  cases where j = m or v =< 2m'+2 .  In these cases the 

quotient (s 2m )/J is (isomorphic to the boundary complex of) a direct sum of 
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simplices, and the ( m - ]  +2)-equivalence of J and J '  implies not only the 

equality of the/-vectors ,  but also the isomorphism of the quotients cO(V, 2m)/J 
and c~(V,2m )/J'. 

Section 9 contains two lemmas which are used in the second part of the proof. 

In the second part (Section 10) we prove Theorem 7.2 in the case where J '  is 

obtained from J by shifting the ( m - ]  + 2)-blocks of J along C(V), keeping 

their relative order fixed. 

Finally, in Section 11, we prove Theorem 7.2 in its full generality. 

8. The cases v < 2 m + 3  or ] = m  

THEOREM 8.1. For v < 2m +3,  the hypotheses of Theorem 7.2 imply the 
isomorphism of the quotients c~(V,2m )/J and ~(V,2m )/J'. 

PROOF. If v ----2m + 1, then ~(V, 2m) is (isomorphic to the boundary com- 

plex of) a 2m-simplex, and the quotients cr c~(V,2m)/J' are both 

(2m - ])-simplices. 

Consider the case v = 2m + 2. Since J and J '  are (m - ] + 2)-equivalent, they 

have the same number, say % of (m - ] + 2)-blocks. If 7 = 1, then J and J '  are 

similar subsets of V, and the corresponding quotients are clearly isomorphic. If 

7 =>2, then V \ J  contains at least y ( m - j + 2 )  points between the different 

blocks, and at least ] - 7 points "within" the blocks. (Obviously 7 =< j. Since J is 

separated, a block which contains x points of J bounds at least x - 1 separating 

points of V\J .)  Thus 

(8.1.1) 2m + 2 - j  = Iv\11--> v ( m  - i  + 2 ) + j  - v 

and equality holds only if every two adjacent ( m - j  +2)-blocks of J are 

separated by precisely m - ]  +2  points of V\J, and any two adjacent points 

within a block of J are separated by a single point of V\J. 
The inequality (8.1.1) is equivalent to 3, =< 2. Since ~, _-> 2, we conclude that 

7 = 2, and equality must hold in (8.1.1). 

Therefore J consists of two (m - j  + 1)-blocks J~ and J~, separated by precisely 

m - ]  + 2 points of V \ J  on each side, and two adjacent points within each block 

are separated by a single point of V\J .  The same holds for the two (m - ]  + 2)- 

blocks J'l and J~ of J'. 
Since, by assumption, J and J '  have similar blocks, it follows that I Jl I = [J'II 

and I J2[ = IJ~] (or [Jz[ = IJ~'l and [J21 = [J~l), and therefore J and J '  are similar 

subsets of V. This implies the isomorphism of the corresponding quotients. [] 

In the next theorem we settle the case ] = m. 
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THEOREM 8.2. Suppose I V I = v > 2m => 2, and let J, J' be separated m-  

subsets of V. Let 5~ = ~ ( V , 2 m  )/J, ~K' = qg(V,2m )/J'. Then the following asser- 

tions are equivalent: 

(a) J and J' are 2-equivalent, 

(b) ~ and :K' are isomorphic, 

(c) = f ( y c ' ) .  

PROOF. ( a ) ~  (b). A 2-block of cardinality a in J is just the set of points of J 

which separate adjacent elements of a chain of length a + 1 in V\J .  (See [1, 

Definition 4.2].) Thus saying that J and J '  are 2-equivalent means that there is a 

length-preserving 1-1 correspondence between the chains of length > 1 of V \ J  

and those of V \ J ' .  By [1, Theorem 5.7], the isomorphism type of ~c is 

determined by the lengths of the chains of length > 1 of V\J .  (See the remark 

following Theorem 5.7 in [1].) Therefore (a)-* (b). 
(b)--* (a). Suppose ~r ~ ~ ( T  a, ~ ) . . .  ~) Ta,), and X ' ~  ~3(T ~, ( ~ . . .  (~ T~,), 

where 1 =< al <-- �9 �9 �9 --< a, and 1 _-</31 _-< �9 �9 �9 --< flu. By Theorem 5.9, X has t missing 

faces of cardinalities 1 + a~ , . . . ,  1+ a,, and ~/" has u missing faces, of car- 

dinalities 1 +/3~, . . . ,  1 +/3u, respectively. An isomorphism between K and ~c' 

maps mf ~'{ onto mf ~ ' .  It follows that if ~ and ~ '  are isomorphic, then u = t 

and/3i = ai for 1 -<__i _-< t. This implies, by [1, Theorem 5.7], a length-preserving 

1-1 correspondence between the chains of length > 1 of V \ J  and those of V \ J ' ,  

and therefore also a size-preserving 1-1 correspondence between the 2-blocks of 

J and those of J' .  (See the first part of this proof.) Thus (b)-* (a). 

(b)--~ (c). Obvious. 

(c)--~ (b). X is an (m - 1)-complex, and the missing faces of ~'{ are pairwise 

disjoint (see [1, Theorem 5.8]). The same holds for ~ ' .  For 1 _-< i _-< m, denote by 

r~ (r'~) the number of missing/-faces, i.e., missing faces of cardinality i + 1, of ~/" 

(~') .  Now assume f ( K ) =  f (X ' ) .  
In order to prove that ~'[ and ~'t" are isomorphic, it suffices to show that ri = r'i 

for 1 < i _-< m. This will be done by induction on i. Fix k, 1 -<_ k _-< m, and assume 

that r i=r ' i for  l = < i < k .  

Then both X and ~/" have r~ missing/-faces for 1 -_< i < k. Since ~r and ~ '  have 

the same number of vertices, and all missing faces of ~/" (and of K')  are pairwise 

disjoint, it follows that ~r and ~'[' have isomorphic ( k -  1)-skeleta. 

Define Zk (~[) (Ak (~'[')) to be the number of (k + 1)-subsets of vert ~ (vert * ' )  

which properly include a missing face of ~/ (X'). The isomorphism between 

skelk_,(X) and skelk-~(~') implies Ak (~/') = )tk (~ ') .  Each (k + 1)-subset of vert 

is either a k-face of X, or a missing k-face of X, or properly includes a smaller 
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missing face of ~,  and these three possibilities are mutually exclusive. It follows 

that 

(fo(X)  
k + 1 / =  h ( X ) +  r~ + a(~O, 

and similarly 

k + 1 / = fk (X') + r~,+ Ak (X'). 

Since f ( X )  = f(g{') and ak (g{) = Ak (X') it follows that rk = r~. 

This concludes the proof of the implication (c)-+ (b), and of Theorem 8.2. 

9. Two iemmas 

In this section we present two lemmas which will be used in the second part of 

the proof of Theorem 7.2 in Section 10. First we need some definitions. 

All numbers appearing in this section are integers. A finite set I of integers is a 

segment if for all a, c E / ,  a < b < c implies b E / .  The segment [a, b] is defined 

by [a,b]={c :a <=c <=b}. Thus [a,b] = 0  if a => b. 

Let S be a finite set of integers. A block of S is a segment in S which is 

maximal (with respect to inclusion). 

A block B of S is even (odd) if it contains an even (odd) number of elements. 

Denote by v(S) the number of odd blocks of S. Clearly 0 =  < v(S)<- < _ ISI, and 

v(S)==-IS I (mod 2). S is separated if v (S )= lS l .  (Compare the definition of 
blocks in a cycle [1, Section 3].) 

DEFINmON 9.1. For nonnegative integers a,/3, A,/ ,  let G (a,/3, A, t*) be the 

set of all pairs of sets (S, T), such that S C [1, a ], T C [1,/3], IS I+ I T I = A, and 
v(S)+ v(T) = ,~ - 2tx. 

If one or more of the integers a,/3, )t,/x is negative, define O(a,/3, )t,/x) = 0 .  

Define g(a,/3, A , / , ) =  IO(a,/3, A,/z)l. 

Clearly g (a , /3 , ) t , / z )=0  if A <2 / , .  If S C [ 1 ,  a] ,  then S has at least v(S) 
blocks, and these blocks are separated by at least v ( S ) -  1 elements of [1, a]\S. 
Therefore a >>_IS I+ v ( S ) -  1. Similarly, if T C [1,/3], then /3 -->l T I+ ,,(T)- 1. 
Therefore, if (S, T) E G(a,/3, A, #) ,  then 

,, +/3 -->lsl+lzl+ v(s)+ v ( T ) - 2  = 2,~ - 2 / ,  - 2 .  
Thus 

g ( a , / 3 , a , t , )  = 0 if a +/3 < 2 ( a  - t , -  1). 
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We shall show that  the n u m b e r  g (m/3 ,  A, ~ )  does not depend  on the individual 

number s  a , /3 ,  but  only on their  sum, provided  min(a , /3 )  _-> A - ~ (and even for  

rain(a,  13) = > A - 1 ,  in case ~ = 0 and A _-> 1). To  show this, it clearly suffices to 

prove  the following lemma.  

LEMMA 9.2. Suppose either m i n ( a - 1 , / 3 ) = > A - / z ,  or t z = 0 ,  A=>I and 

min(a  - 1 , / 3 ) =  > h - 1. Then g(a,/3, A, tz ) = g(a - 1,/3 + 1,h , /z) .  

PROOF. First we shall establish an identi ty ((9.2.3) below) which will enable  

us to prove  the l emma  by induction on h - / z .  

If a _->2, and (S, T ) E  G(a,/3, h, tx), then exactly one of the fol lowing three  

condi t ions holds: 

(a) a ~ S, in which case (S, T)  E G (a  - 1,/3, A,/z), 

(b) a E S  but  a - I ~ S ,  in which case ( S \ { a } , T ) E G ( a - 2 ,  fl, A -  1,/z),  

(c) o r E S  and a - I E S ,  in which case ( S t { a - I , a } , T ) E  

G(a - 2 , / 3 , a  - 2 , ~  - 2). 

Converse ly ,  if a_>-2, then ( S ' , T ) E G ( a - 1 , / 3 ,  A ,~)  implies ( S ' , T ) r  

G(a,/3, h, tz) and a ~ S ' ;  ( S ' , T ) E G ( a  - 2,/3, h - 1 , /z)  implies 

( S ' U { a } , T ) E G ( a ,  fl, a, tz), a E S ' U { a }  and a - l E S ' U { a } ;  ( S ' , T ) C  

G ( a  - 2,/3, h - 2 , / z  - 1 )  implies (S '  U {a - 1 , a } , T ) E G ( a , / 3 ,  h, tz), and 

{a - 1, a}  E S ' U  {a - 1, a}.  

It follows that  for a = 2 

g(a, fl, A, tz) = g(a  - 1,/3, A,/x) + g ( a  - 2,/3, h - 1, /x)  

(9.2.1) 
+ g ( a  - 2,/3, ~ - 2 , ~  - 1 ) .  

Apply ing  a similar a rgumen t  to T we obtain,  for a _-> 2, /3 => 1, the identi ty 

g(a  - 1,/3 + 1,A, tz) = g(a  - 1,/3, A, t z ) +  g(a - 1,/3 - 1, h - 1, k~) 
(9.2.2) 

+ g ( a  -1 , / 3  - 1 , A  - 2 , / x  - 2 ) .  

Subtract ion of (9.2.2) f rom (9.1.1) yields, for  a _-> 2, /3 => 1: 

g(a,/3, h, lx ) -  g(a  - 1,/3 + 1, A,/x) 

(9.2.3) = - [g(a - 1,/3 - 1,A - 1 , / z ) -  g(a  - 2,/3, A - 1,/~)] 

-[g(a - 1 , /3  - 1 ,A  - 2 , / ,  - 1 ) - g ( a  - 2 , / 3 ,  A - 2 , / ,  - 1)l .  

Now we proceed  with the p roof  of our  l emma.  

Case /. / ~ = 0 ,  A - 1 .  We  assume m i n ( a - 1 , / 3 ) = > A - 1  

g(a,/3,A,O) = g(a  - 1,/3 + 1, A,0), by induct ion on ,L 

and show that  
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Initial step: h = l .  T h e n  a > l ,  and clearly g(a,/3,1,O)=ot+/3= 

g ( a  - 1 , / 3  + 1, 1,0). 

Inductive step: Let  h > 1, and assume the s t a t ement  holds for  h - 1. The  

assumpt ion  min (a  - 1,/3) > h - 1, implies min (a  - 2 , / 3  - 1) > (h - 1 ) -  1, and 

therefore ,  by (9.2.3) and the induction hypothesis :  

g(a , /3 ,  A , O ) -  g ( a  - 1,fl + 1,A,0) 

= - [g(a - 1,/3 - 1, A - 1 , 0 ) -  g ( a  - 2,/3, A - 1,0)] = 0. 

((9.2.3) is appl icable here,  since a --- A = 2, /3 _-> A - 1 - 1.) 

Case II. We assume m i n ( a - 1 , / 3 ) = > A - # ,  and show that  g(a , /3 ,  A , / z ) =  

g ( a  - 1,/3 + 1, A,/z), by induction on A - / z .  I f / z  < 0 or  A < 2/z, then both  sides 

of the above  equal i ty vanish. Assume  therefore  that  0_-< 2/z _<- A. 

Initial step : If A - / z  = 0, then A = / x  = 0. But g (a,/3, 0, 0) = 

g(a - 1,/3 + 1 ,0 ,0)  = 1, since min (a  - 1 , ] 3 ) = 0 .  

Induction step: Let  A - / z  _>-1, and assume the l e m m a  holds for  all A', /z '  

such that  A' - / z '  < A - / z .  Since min (a  - 1,/3) _-> A - p. => 1, we have a _-> 2 and 

/3 _-> 1 and may  apply  (9.2.3). Since min (a  - 2, 13 - 1) _-> A - / ~  - 1 = (A - 1 ) - / z  = 

(A - 2 ) - ( / z -  1 ) <  A - / z ,  we conclude,  by the induction hypothesis ,  that  both  

brackets  on the r ight-hand side of (9.2.3) vanish. []  

For  the second l e m m a  we need ano the r  definition. 

DEFINmON 9.3. For  posit ive integers ], l j , . . . , l  j, let F = F ( I ~ , . . . , l , )  be a 

graph  which is the disjoint  union o f j  paths  L~,- �9 Li, where  L~ is of  length t~ - 1, 

i.e., L, has l, vertices,  for 1 = < i _  <- j. 

For  A => 0, let G = G(lx, . . . ,  lj, A) be the collection of all i ndependen t  sets of 

vert ices of F of cardinal i ty A, which do not  contain any end-ver tex  of F. Thus,  an 

e l emen t  of G is a set of A mutual ly  non-ad jacen t  2-valent  vert ices of F. 

Finally, let g(ll , . . . , l j  ;A)  be the cardinal i ty of G(lz,...,l~ ;A). 

LEMMA 9.4. If j >= 2 and min(l~ - 1,12)--> A + 1, then 

g(l~,12,...,l, ;h )= g( l , -1 ,1:  + l,13,.. . ,l ,  ;A ). 

PROOF. If A = 0, then bo th  sides of the above  equa t ion  equal  1. T h e r e f o r e  

assume A _-> 1. Let  W be the set of vert ices of  L3 U �9 .- U Lj. ( W  = O  if j -- 2.) 

For  A C W ,  let G A ( I , , . . . , I j ; A ) = { S E G ( I , , . . . , I j ; A ) : S A W = A } .  Since 

G(l~,. �9 lj ;A)  is the disjoint  union of GA (l~,..., lj ;A)  over  all subsets  A of W, 

it suffices to show that  the sets GA=GA(II,12,. . . , I~;A) and G , ~ =  

GA (It - 1, 12 + 1, 13,-- ", li ; A) have  the same  cardinal i ty  for  all A C W. 
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Now, if A is not independent,  or if A contains an end-vertex of L 3  U �9 �9 �9 U L j ,  

or if I A l >  ;t, then Ga = G~,= Q. If A is independent and contains no 

end-vertex of L3 U . . .  (.J Lj and I A I = '~, then GA = G'A-- {A }. In the remaining 

case we have IA I< ;t, and therefore A >0 .  Using the notation of Definition 9.1 

we obtain in this case: 

[GAI=g(I,-2,12-2, A-IAI,O), IG~l=g(l,-3,12-1,a -IAI,O). 

These numbers are well defined, since min( l~-1,12)= > A + 1---2 implies 

min(l, - 3, 12 - 2) => A - 1 _-> 0. Since 0 < A - [A I < A, we can apply Lemma 9.2 

with/~ = 0 and obtain I GA I = I G ~1. [] 

10. Proof of Theorem 7.2, part II: shifting blocks 

Let J, J '  be separated j-subsets of V, where V = [ 1 ,  v], 0 < j < m ,  v > 

2 rn+3=>5,  and let a = m - j + 2 .  We have to show that if J and J '  are 

a-equivalent ,  then f(cg(V, 2m)/J)=f(~(V,2m)/J'). If j < 1, or if J and J '  

consist of a single a-block,  then J and J '  are similar, in the sense of Definition 

7.1(a), and the corresponding quotients are isomorphic. 

Assume therefore that j > 2, and that J consists of at least two a-blocks. Let 

B1," �9 ", Bq be the a-blocks of J, and suppose they appear in this order on C(V). 
For 1 =< i < q ,  denote by D, the segment of C(V) that separates Bi from Bi+, 

(where Bq+, = B1). Clearly I D~ I => a. Then J '  can be obtained from J by a finite 

sequence of steps of four types: 

I. Shift B, forward by one unit, provided I D, I > a. This will increase I D,-, I by 

1, and decrease I D, [ by 1. 

II. Reflect B~ about its midpoint. This leaves D,_~ and D~ unchanged. 

III. Exchange the position of B~ and B~+,. This may cause a shift in Di, but will 

leave ID, [ unchanged. 

IV. Apply to J an automorphism (rotation or reflection) of C(V). 
A step of type IV clearly preserves the isomorphism type of ~(V,2m)/J, and 

therefore i t s / -vec tor .  

In this section we shall show that a step of type I does not affect the / -vec tor .  

The corresponding result for steps of type II and III will be proved in the next 

section. 

Since the isomorphism type of ~ (V, 2m )/J is preserved under rotations of J in 

C(V),  we may assume that v E J. This will somewhat simplify the notation. For 

the formal statement of our result we shall need the following definition. (See 

Fig. 3.) 
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v = h  i h'~ ,=I 

Fig. 3. 

DEFINITION 10.1. Given positive integers v, m, j, 11," ",lj, such that  j _-< m 

and v=j+Ei=~l~ = E~=1(1+/~)_-> 2m +3 ,  define, for O<=k<-_j:hk = 
E~=~(l+/~). Then O = h o < h l < . . . < h s = v ,  and h~-hk_~=l+lk>-_2 for 

l<=k<-_j. Define also: V = [ 1 ,  v], J={h l , . . . , h j } ,  X = ~ r ( m ; l ~ , " ' , l j ) =  
~(V,2m)/J,  [k (m; l~ , ' ' ' , l s )=fk(~)  (O<-_k < 2 m - j )  and f (m; l l , . . . , l j )  = 

f(~r = (f0(~),  f , ( ~ ) , . . . ,  f2m-,-,(sr 
Note that, for 1 =< i -< j, h~_~ and hi belong to the same a-b lock  of J iff either 

l~ < a, or all the numbers lk, k ~ i, are < a. 

The vector f (m ; L , ' "  ",/j) is clearly invariant under  cyclic permutat ions and 

reflections of the sequence ( l~, . - . ,  lj). 

DEFINITION 10.2. Two sequences (L , ' "  ", It) and ( I [ , - . . , l~)  of positive inte- 

gers are a-equivalent if X~=~ l~ = ~:~.j l', and min(l ,  a )  = min(l'~, a )  (i.e., l~ = l'~ or 

min( l ,  l'~) _-> a ) for 1 < i _-< j. 

Note that the sequences (1~,.. . ,  It) and (1'~,..., 1~) are a-equivalent  iff the 

corresponding sets J, J '  (see Definition 10.1) are obtained from each other by a 

finite sequence of shifts of a-blocks,  which leave the point v E V fixed. These 

shifts, or their inverses, are,steps of type I, as described above. 

THEOREM 10.3. Suppose v, m, j, l~,...,lt are as in Definition 10.1, and 

2<-:j<m. If ( /~ , . . . , l j )  and (1~,...,1~) are (m-j+2)-equivalent,  then 

f (m ; 1 , , . . . ,  I,) = f (m; l~ , . .  ., l;). 

Theorem 10.3 is an immediate  consequence of the following theorem: 
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THEOREM 10.4. Suppose rn, j, l~ , . . . ,  li are positive integers satisfying ] + 

E~, li =>2m + 3 = 2 j  +3_>-7. I f  tr, z E [1,j], t r~  r, and l'i = l~ -8 ,~  + ~, for 1 <= 

i <=j (i.e., l" = lo - 1, l" = l, + 1, l', = l, for i ~ [1,j]\{o-, r}), and if min(/ ' ,  l~)= > 

m - j  +2,  then [ ( m ; l , . . . , l s ) = f ( m ; l ~ , . . . , l ~ ) .  

(Theorem 10.3 clearly follows from Theorem 10.4, by induction on 

E~=, l l ' , -  1,[.) 

PROOF. Our theorem holds for j = m, by Theorem 8.2. We shall therefore 

restrict our attention to the cases where 2 < j < m. 

We shall use the notation introduced in Definition 10.1, and denote by h;,, J ' ,  

~ '  the entities which correspond to hk, J and ~/" relative to the sequence 

( l ' , , . . . ,  l)). 

Since cO(V, 2m ) is m-neighborly (i.e., every m vertices determine a face), with 

v vertices, ~ =  ~ ( V , 2 m ) / J  is (m- j ) -ne ighbor ly ,  with v - ]  vertices, and 

therefore fk (St{)= (~,~) for 0 =  < k < m - j .  The same holds for ~r, (see also [1, 

Theorem 4.5]). Moreover, / (K) ,  / ( ~ ' )  are /-vectors of simplicial ( 2 m - j ) -  

polytopes, and therefore satisfy the Dehn-Sommerville equations (E~, "-~) - 1 < 

k =< 2 m - j - 2  (see [2, p. 146]). These equations determine the upper half of 

[(~{) (and of/(5~')) in terms of its lower half. More precisely, for t = [~(2m - j ) ] ,  

the n u m b e r s / , ( ~ ) , . .  ",f2,n-i-~(~0 are linear functions of the numbers /_~(~)  
(= 

In order to establish the equality of [ ( X )  a n d / ( ~ ' ) ,  it therefore suffices to 
show that /k (K) =/~ (~r,) for 

m - j < = k  < [ ~ ( 2 m - ] ) ] - l = m -  [ ' +,/--~] 
L ,~ J 

Thus, for j = 2, 3 the only interesting value of k is k = m - j. 
In the proof of/k (~r) =/k (if{') for general k, which will be rather complicated, 

we shall find it convenient to assume that 4 =< j. Therefore we shall first give a 

separate (and simpler) proof of fi,_j (~r) =/,n-j (~r,). 

Since ~ is (m -/ ')-neighborly, every m - j  + 1 vertices of ~c determine either 

an (m - j ) - f a c e  or a missing face (see [1, Definition 2.1]); the same for ~c,. Thus 

/,n-j ( ~ ) = / m - j  (~r,) itI ~C and ~ '  have the same number of missing faces with 

m - j  +1  vertices. By [1, Theorem 4.5] (see also [1, Definition 4.2]), an 

(m -~f + 1)-subset S of V \ J  is a missing face of ~ i t tno element of S is adjacent 
(in C ( V ) )  to an element of J, and no two elements of S are adjacent to each 

other. Since C ( V ) \ J  is the disjoint union of j paths of lengths 11 - 1 , . . . ,  lj - 1, 

it is a graph of type F(/1, . . . , l j ) ,  as defined in Definition 9.3, and the set 
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of missing faces of Y/" with m - ]  + 1 vertices is precisely the collection 

G(l l , . . . ,  lj ;m - ]  + 1) defined there. 

Applying Lemma 9.4 with A = m - j  + 1, we find that 

I O(l~,.. . , lj  ;m - j  + 1)l = t G(l'~,.. . , l~;m - j  + 1)1, 

and therefore [,,_j (~() = fm-s (Sg'). 
From now on we assume that 4 =< j < m. 

Since the number fk (Y{) = [k (m ; 11,-" ", li) is invariant under cyclic permuta- 

tions (and reflections) of the sequence ( l , , . . . ,  l~), we shall also assume, without 

loss of generality, that o- = 1. 

At this point we introduce some further notations, as follows: For 1 =< i < j, let 

h7 = h ,  + 1, h~- = h, - 1, L = [h?, h~], I ~ = [h~- + 1, h~ - 1]. (See Fig. 3. Recall 

that by Definition 10.1, ho = 0, hj = v, J = {h~,. �9 hi}, and note that ILI = l,, and 

I ~  li=<2.) 

Denote by ~k the set of k-faces of ~,  and define subsets of ~% as follows: 

o % ( 3 ) = { ~  o% : h;EdP},  o% (4) = {q~ ~ ~k : h,+ E qs}, 

4 

~k(0) = ~ \  I,.J g%(i); 
i = 1  

and for every non-empty subset S of {1,2, 3, 4}: 

o~k(S) = ("l{~k (i) : i E S}. 

Then clearly 

. =  

(10.4.1) 
= I~k (O)l + ~ { ( -  1)ls'-'J~k (S)l : 0 , ~  S C {1,2,3,4}}. 

The entities corresponding to ~'k, o~k (i), o~k (S), h ~-, h ,+, L, I ~ for the sequence 

( l [ , - . . , l ; )  will be denoted, quite naturally, by , ~ ,  ~;~(i), ~:;,(S), etc. From 

equation (10.4.1), and its dashed counterpart, it follows that in order to prove 

that fk (Y()= fk (Sg') it suffices to show: 
(a) I~k (0)l = and 

(b) lock (S)I -- / o  (S)l for all O ~ S C {1,2, 3, 4}. 

We shall establish (a) directly; (b) will be proved by an inductive argument, 

using the assumption that q-heorem 10.4 holds for smaller values of the 

parameter m. 
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PROOF OF (a). If A is a set of integers and b is an integer, define 

A + b  ={a  + b  :a  CA} .  For 1 <  i_-<j, i ~ r ,  and A E L  = [h~-,h+], define A ' =  
A - h ,  +h'~ (i.e., A ' = A - 1  if l < i < r ,  A ' = A  if r<i<-_j). Then A - - ~ A '  
is a 1-1 correspondence between the subsets of L and those of I'~. 
If A C V \ ( J U 1 1 U L ) ,  define A ' = U { ( A  N L ) ' : i ~ [ 2 , j ] \ { z } } ,  i.e., A ' =  

( ( a  N [ht, h . - , ] ) -  1) U ( a  N [h,, v ]). Then clearly I a 't = I A I, and the mapping 
A ~ A '  is a 1-1 correspondence between the subsets of V \ ( J U  11UL) and 

those of V\(J '  U I~ U I'). Moreover,  

A ' U  J '  = ( ( (a  U J )  N [hl, h ._ , ] ) -  1) U ((A U J)  n [h,, v]), 

and z , (A'U J ' ) =  v(A U J). (Here ~,(S) is the number of odd blocks of S, as 

defined at the beginning of Section 9.) 

For A C V \ (J U I1 U L)  define 9~k (0, A ) = {~ E ~ (0) : ~ \ (I, tO L)  = A }, i.e., 
9~k (0, A ) is the set of all k-faces qb of Y/" such that qb n {h ~-, h ~, h 7, h .+} = ~ and 

@\(I1U L)  = A. Similarly we define ~ ( 0 , B )  for B C V \ ( J  U 1'1U 1;). 
Now ,e#k (0) is the disjoint union of the sets ~:k (0, A ) where A ranges over all 

subsets of V \ ( J  U 11U I2), and 9~;,(0) is the disjoint union of the corresponding 

sets .~(0 ,  A').  Therefore, in order to prove (a) it suffices to show that 

I~k(0, A) l  = I~:~(0, A')I for all A C V \ ( J  U L  U L). We shall show this now, 
using Lemma 9.2. 

Every member of ~:k (0, A )  can be represented uniquely as a union A U S U 
T, where S C I  ~ T C I  ~ Such a union A U S U T  is a k-face of Y~" iff 

[A U S U T I = k + 1, and J U A U S U T is a face of ~ (V,2m) ,  i.e., iff (see [1, 
Theorem 3.3]) 

I A U S U T [ = k + I  and 

(10.4.2) IJ U A U S U T I + u(J O A tO S u T) <- 2m. 

The three sets A U J, S and T are pairwise disjoint. Moreover, no element of 

any one of them is adjacent to elements of the other two sets. Therefore 

IA USUTI=IAI+ISI+ITI, and 
(10.4.3) 

~,(A U J U S U T) = ~,(A U J ) +  z,(S)+ ~,(T). 

We may assume that [A I -< k + 1, since otherwise ~k (0, A ) = ~ ( 0 ,  A ') = O. 

Define: ,~ = k + 1 - I A I- Then A U S U T ~ ,~k (0, A ) implies IS I + I T I = ,L 
Choose sets S C I ~ T C I ~ such that I Sl+[TI = A (if such a choice is at all 
possible), and define/z = �89 - z , (S) -  ~,(T)). Then/z  is an integer, and ~,(S)+ 

u(T) = A - 2/x. From (10.4.2) and (10.4.3) it follows that A U S U T E ~:k (0, A ) 
iff 
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2m >=j + k + l + v(JU A )+ v(S)+ v (T)=j  + k + l + v(J U A)+ h -2IX, 

i.e., iff IX _-__/z*, where IX* = �89 + k + 1 + ,~ + v(J U A ) ) -  m. Note that IX* is an 

integer, since v ( J U A ) - I J U A I  (mod2), and [ J U A I = I J I + I A [ =  
j + k + 1 - h. Note also that v(J) = IJ[,  since J is separated. Adding the points 

of A to J one by one will change the number of odd blocks by exactly one at 

each step. Therefore v(J U A ) _  >- v ( J ) - I A  I = j  - I A  1. It follows that 

#,* >�89 + k + I + A  + j - I A  [ ) -m  

=�89 + k +1+ ,~  + j - ( k  + l - A ) ) -  m = j + A  - m .  

The number of pairs (S, T), S C I ~ T C I ~ such that IS [ + [ T I = ,~ and 

v(S)+ v ( T ) = ) t - 2 I X  is exactly g(a,/3, h, ix) (see Definition 9.1), where a = 

II~ = l , - 2 ,  /3 = II~ = I, - 2 .  Thus 

(10.4.4) [~:k(0, a ) [  = ~ {g( l , -2 ,1 , -2 ,  h, ix):max(O, ix*)<----ix<----[2]}, 

where h = k + 1 - I A  l, and IX* =�89 k + l + h  - v ( J U A ) ) - m  _---]+h - m .  

For [ ~I,(0, A ')1 we obtain a similar expression, with the same values of h and 

Ix*, since [ A ' I =  [A I, and v ( J 'U  A ' ) =  v (JUA) ,  i.e., 

The above sum may be empty, but then the corresponding sum in (10.4.4) is 

also empty, and both vanish. 

Writing a = / / - 2 ,  /3 = / , - 2 ,  we obtain g( l l -2 ,1 , -2 ,  h, Ix )= g(a,/3, h, Ix) 
and g(ll - 2, l',- 2, )t, ~) = g(a - 1,/3 + 1, h, IX). These two numbers are equal, 

by Lemma 9.2, provided min(a - 1,/3) _-> A - IX. By the assumptions of Theorem 

10.4, min(a - 1,/3) = min( /~ , / , ) -2_-  > m - ] .  On the other hand, since /z => Ix*, 

we have h - Ix <_- h - Ix * _-< h - (] + h - m) = m - ]. It follows that 

g( l l -2 ,1 , -2 ,  h, Ix)=g(lI-2,1 ' , -2 ,  h, Ix) for Ix _->Ix*, and therefore 

[~:k (0, A )[ = [ :~;,(0, A ')1. This proves (a). 

PROOF OF (b). We have to show that [~:k(S)[=[:~,(S)[ for 

O ~ S C {1, 2, 3, 4}. We asume that 4 =< ] < m. (The cases ] _-< 3 and ] = m have 

been settled already.) 

Case I! S ={1}. ~ E : ~ k ( S )  iff �9 is a k-face of Yt" (=~(V,2m)/J)  and 

h7 = 1 E ~, i.e., itt q~ is a (k + 1)-subset of V\J, 1 E ~,  and q~ U J is a face of 

c~(V,2m). Therefore I~k({1})[ is equal to the number of k-subsets q' of 

V\(JU{1}),  such that ~ 'U(JU{1})  is a face of cr i.e., [:~k(S)[= 

fk_,(c~(V, 2m )/(J U {1})). 
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Since v E J, we obtain,  by [1, T h e o r e m  3.5], 

~ ( V , 2 m ) / ( J  U {1}) = ~ ( V \ { v ,  1}, 2m - 2 ) / ( J \ { v } )  

-~ 5{(rn - 1; lj + 11 - 1, I z , "  ", lj_~) 

(see Defini t ion 10.1; " ~  " means  "is i somorphic  to") .  Thus  

(10.4.6) I ~:k (S)l  = fk-1(m -- 1; lj + 11- 1, 12,'" ", 1 i -- 1). 

In the same  m a n n e r  we obta in  

(10.4.7) I , , ~ ( s ) l  = fk- l(m - 1; / ;  + l [ -  1, l~ , . . . ,  l[_,). 

If ~" = j, then the r ight-hand sides of  (10.4.6) and (10.4.7) are identical.  

If r < j, then  we use the inductive assumpt ion  that  T h e o r e m  10.4 holds when  

m is replaced by m - 1, App ly ing  T h e o r e m  10.4 with m, ], k, o', l, rep laced  by 

m - 1, j - 1, k - 1, 1, ti + l~ - 1, respect ively,  we conclude that  the r ight -hand 

sides of (10 .4 .6 )and  (10 .4 .7 )a re  equal ,  since min( l~+ l '~-  1,/,)=> min(l[ ,  l , ) =  > 

m - j  + 2  = (m - 1 ) - ( j  - 1 ) + 2 .  T h e r e f o r e  I,.~k (S)I = I ,~ , (S) [ .  

The  same  type of a rgumen t  will also settle the cases S = {2}, S = {3} and 

S = {4}. Besides,  these three  cases can also be t r ans fo rmed  into Case I by 

suitable ro ta t ions  or  reflections of C ( V ) .  

Case H: S = { 1 , 2 } .  Since I ~ k ( S ) l = l ~ ' k ( S ) l = O  for  k < l ,  and = 1  for  

k = 1, we shall assume that  k > 2. 

Using the same  a r g u m e n t  as in the beginning of Case  I, we find that  [#:k (S)t  is 

equal  to the n u m b e r  of ( k - 1 ) - s u b s e t s  * of V \ ( J U { 1 ,  h~}), such that  W U  

(J  U { 1 , h ~ } ) i s  a face of cs  i.e., I ~ k ( S ) l  = h - 2 ( ~ ( V , 2 m ) / ( J  O {1,h;})). 

Since v E J  and h i =  h f + l E J ,  c~ (V ,2m) / ( JU{1 ,  h?}) is equal  to 

c~ ( V  \{v, 1, h ~, h ~}, 2(m - 2)) /(J  \ {v, hi}) ~ ~ ( m  - 2, l s + l~ + 12 - 2, 13," ", lj_~). 

T h e r e f o r e  [,~k (S)I = fk-2(m - 2; l i + It + 12 - 2, 13,'" ", lj_~). Similarly 

! ~ ( S ) t  = fk_2(rn - 2; l~ + lI + l~ - 2 , 1 ; , . - . ,  1/-1). 

If r = 2 or  ~" = j, then  the express ions  on the r ight -hand side of  the last two 

equat ions  are identical.  If  2 < ~- < j, then  the equal i ty  of these two express ions  

follows f rom the inductive hypothes is  that  T h e o r e m  10.4 holds with m, ], k, o-, l~, 

z rep laced  by m - 2, j - 2, k - 2, 1, lj + l~ + lz - 2, ~- - 1, respect ively.  No te  that  

min(/j + l~ + lz - 2, l ,)  => min(/ l ,  l ,)  => m - j + 2 = (m - 2) - (j - 2) + 2. The re fo re  

~, ( s )  = ~ ( s ) .  

T h e  case S = {3, 4} can be reduced  to the case S = {1,2} by a suitable ro ta t ion  

of C ( V ) .  
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Case I l l :  S = {1,3} (k => 2). The  same arguments  as before  show that  

lS~k (S)[ = [k -2 (~ (V \ {v ,  1, h,-1, h 7}, 2(m - 2))[(J\{v, h,-l})) 

f fk-2(m - 2; l s + It + 12 - 2, 13," ",/r-l) if z = 2 

= [k-2(m - 2; lj_~ + lj + l~ - 2, 12," ", lj-2) if ~" = j 

fk-2(m - 2; lj + l~ - 1, 12," ", 1,-2, 1,_1 + I, - 1, 1,+1, ' ' - ,  ls-i ) 

if 2 <  ~ '< ] .  

For 15~(S)[ we obtain the same expressions with 11," ", lj replaced by l',, �9 �9 l). 

If ~" = 2 or z = j, then the expressions for 15~ (S)l and I 5~,(S)I are identical. If 

2 < ~- < j, use T h e o r e m  10.4 (the induction hypothesis)  with m, j, k, ~r, l~, z, l, 

replaced by m - 2 , j  - 2 ,  k - 2 ,  1, ls + l~ -  1, ~- - 1, l,_~ + I, - 1, respectively.  

The  case S = {2,4} is t rea ted  in the same way. 

Case IV:  S = { 2 , 3 }  (k=>2).  For  z > 3 ,  this case is t rea ted  in the same 

manne r  as Case III. 

For  r = 3, we obtain [ o~ (S)[ = 15~,(S)I = fk-2(m - 2; l~ + 12 + 13  - -  2, 1 , , . . . ,  lj). 

If ~-=2,  then a k-face  qb of ~ belongs to 5~k(S) iff h ~ - ( = h z - 1 )  and 

h 2( = h~ + 1) belong to ~ .  The re fo re  [ ,~k (S)[ = [~_2(~ (V, 2m) / ( J  U {h ~, h ;})). 

(For details, see Case I.) 

By [1, T h e o r e m  3.5], 

~ ( V , 2 m ) / ( J  U {h~-, h~-}) = ~(V\{h~f ,h~} ,2(m - 1))/((J\{h~})U {h ~-}) 

-~ ~ ( m  - 1 ; l ~ -  l , 12 -1 ,13 , . . . , l j ) .  

There fo re  15~k (S)[ = fk_z(rn - 1; l~ - 1, Iz - 1, 13," ", lj), and similarly I  g(s)l = 

fk_z(rn - 1; l~ - 1, l ~ -  1 ,13, . - . ,  lj). Since we are assuming that j < m (see the 

opening  sentence of the proof  of T h e o r e m  10.4), we find that  

fk-z(m - 1; I~ - 1, 12 - -  1, 1~,. . . ,  lj) = fk-2(m -- 1; l ~ -  1, l~-- 1, /3, '" " ,  lj) 

by T h e o r e m  10.4 (the induction hypothesis) ,  with m, k, o', l~, z, l, replaced by 

m -  1, k -  2, 1, l ~ -  1, 2, l ~ - 1 ,  respect ively (j remains unchanged).  Note  that  

m i n ( l ~ -  1, l~ -  1) = min(/l ,  12)- 1 -> (m - j  + 2 ) -  1 = (m - 1 ) - j  +2 .  The re fo re  

I (s)l  = I 
The  case S = {1,4} is t rea ted  in the same manner .  

Case V: S = {1,2,3} (k = 2). He re  we distinguish four  subcases. 

V1. 3 < �9 < j. As before ,  we obtain:  

I2TE (S)I = f~_,(m - 3; lj + l, + lz - 2, l~ , . . . ,  1,_2, l,_, + / ,  - 1,/.r+l,"" ", lj--l), 
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and a similar expression for  [ ~ , ( S ) [ .  The  desired equali ty follows from T h e o r e m  

10.4 (the induction hypothesis)  with m, k, j, tr, I~, ~', l~ replaced by m - 3, k - 3, 

/' - 3, 1, lj + 1~ + 12 - 2, ~- - 1, 1,_~ + I, - 1, respectively. 

V2. z = 3 .  In this subcase we obtain for [~:~(S)I and [ ~ , ( S ) [  the same 

expression,  namely f~-3 (m - 3; lj + 1~ + 12 + 13 - 3, L , ' "  ", lj_~). 

V3. �9 = 2. Here  we obtain,  as in Case IV (with z = 2): 

1 ~ (S)[ =fk-3(m - 2 ;  l~ + l , - 2 ,  l z -  1, 13,'" ", lj-,). 

For  [ ~ ( S ) [  we obtain a similar expression,  with 1,, 12 replaced by 1'~, L'. These  

two expressions are equal  by T h e o r e m  10.4 (the induction hypothesis),  with m, k, 

j, (r, l~, z, 1, replaced by m - 2, k - 3, j - 1, 1, lj + 1, - 2, 2, 12 - 1, respectively. 

Notice that the reduced values of the parameters  remain within the scope of 

T h e o r e m  10.4, since we assume that  4 _-< j < m. 

V4. z = j .  As in subcase V2, we obtain for [~k(S)[  and [~; ,(S)[  the same 

expression,  namely  fk-3(m - 3; 1i-, + Is + 11 + lz - 3, t3 ,"  ", Is-2). 
This concludes Case V. The  cases S = {1,2, 4}, S = {1,3, 4} and S = {2, 3, 4} can 

be t rea ted  in the same manner .  They  can also be reduced to Case V by suitable 

rotat ions or reflections of C ( V ) .  

Case 1/1: S ={1 ,2 ,3 ,4}  (k _->3). Here  we distinguish six subcases. 

VL.  3 < z < j -  1. Proceed  as in subcase V~ above.  

VI2. 3 = z < j -  1. Proceed  as in subcase V2 above.  

VI3. 3 < z = ] - 1. Same as VI2. 

VI,. 3 = z = j - 1 .  Here  j = 4 ,  and we obtain:  } ~ k ( S ) I = I , ~ ( S ) t  = 

fk-4(C(v - 8, 2(m - 4))). 

VIs. z = 2. Proceed  as in subcase V3 above.  The  expression obta ined  for 

[~k(S)[  is f k - 4 ( m - 3 ; l j + l l - 2 , 1 2 + 1 3 - 2 , 1 3 , " ' , l s - 1 ) ,  and the induction 

hypothesis  is used with m, k, .h (r, l,, ~', l, replaced by m -  3, k -  4, j -  2, 1, 

l, + l~ - 2, 2, 12 + 13 - 2, respectively.  

VI6. ~-= j. Same as VIs. 

This concludes Case VI, and with it the proof  of (b), and with it the proof  of 

T h e o r e m  10.4. 

REMARK. We could have proved  assertion (b) ( [~k(S) [  = [~/ ,(S)[  for  all 

O # S C {1,2, 3, 4}) without  the restrict ion j _-> 4. This would save us the separate  

proof  of T h e o r e m  10.4 for j = 2, 3, would render  L e m m a  9.4 superfluous,  and 

would make  the whole proof  of T h e o r e m  10.4 independen t  of the D e h n -  

Sommervi l le  equations:  all this at the cost of a few extra cases in the inductive 

proof  of assertion (b). 
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II. Proof of Theorem 7.2, part III: reflections 

As in the opening paragraph of Section 10, let J, J '  be separated j-subsets of V 

(V=[1 ,  v ] , 2 = < j < m , v _ > 2 m + 3 )  a n d l e t a  = m - j + 2 .  We observed that if J 

and J'  are a-equivalent, then J can be transformed into J '  by a finite sequence of 

steps of four types, as described in the beginning of Section 10. From Theorem 

10.3 it follows that the f-vector of qg(V,2m)/J remains unchanged when J 

undergoes a transformation of type I. The same holds trivially for transforma- 

tions of type IV. In this section we shall prove that transformations of types II 

and III also do not affect the f-vector of qg(V,2m)/J. 
The main result of this section, Lemma 11.1, can be phrased as follows: Let D, 

D' be two (distinct) components of the graph C(V)\J, each having at least 

m - . / +  2 vertices. D and D'  are paths, and the complement of D U D'  in C(V) 
is also a union of two paths, call them A, B. The endpoints of A and B are in J. 

Let J' be the union of J N B and the reflection of J N A about the midpoint of 

A. Then f(~(V,2m)/J)=f(~(V,2m)/J'). 
(Lemma 11.1, as it appears below, is phrased in different terms, in order to 

facilitate its inductive proof.) 

The invariance of f(~(V, 2m)/J) under transformations of J of type II or III 

can be deduced from the above informal version of Lemma 11.1 as follows: 

For type II, apply the lemma with D, D', J n A replaced by D~, D~+, and B~, 

respectively. (The sets B,, D~ are defined in the beginning of Section 10.) For 

type III, apply the lemma three times: first with D = D ,  D' = D~.2, then with 

D = D~, D ' =  Di+,, and finally with D = D~+~, D ' =  Di+2, as shown in the 

accompanying diagram. In the diagram, X* denotes a reflection of the set X, and 
the dotted arcs indicate which segment is about to be reflected. 

Di 
I 

Di BT+ I 
' .  . .  

l - Di Bi+l =Bi+l 

Di Bi+l 

Bi Di+l Bi+.l Di+2 

Di+l = Di+l Bi Di+2 

Di+l Bi Di+2 

Di+l B~ =Bi Di+2 
lan ; : ;  

The notation used in the next lemma and its proof follows Definition 10.1 (see 

Fig. 3). 
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LEMMA 11.1. Suppose l_-<~r<r=<.h and min( lr , l, ) >= m - j + 2. Define 

l, i f i<=o " or ~'<=i, 
1" 

L I,,+, , i f~ r<i<~ ' .  

Then f ( m  ; l , , . . . ,  Is) = f (m  ; l * , . . . ,  l*). 

PROOF. Since the function f ( m  ; l,,. �9 li) is invariant under circular shifts and 

reflections of the sequence l,,. �9 -, li, we shall assume, without loss of generality, 

that cr = 1. The lemma holds trivially for ~- = 2 and ~" = 3, and for ~" = j it follows 

from Theorem 10.3, and from the invariance properties of f mentioned above. 

Assume therefore that o- = 1 and 4 =< r <= j - 1. We also assume that j < m, 

since the case j = m is already covered by Theorem 8.2. 

Let ~ =  YC(m;I , , . -" , Is )and ~(*= Y ( ( m ; l * , . . . , l * ) .  Y[, Y{* are ( 2 m - j -  1)- 

complexes over V\J .  Fix k, 0<= k < 2 m - j ,  and denote by o%k, 0%* the set of 

k-faces of Y(, Y{* respectively. 

As in the proof of Theorem 10.4, let h~- = h i  - 1 ,  h ;  = h,-1 + 1 (see Fig. 3). 

Define subsets O%~ (i), 0 =< i = 3, as follows: 

o%k(O)={FEo%k:h~iff_f andh; f f_F} ,  O%k(1)={F~O%k:h;EF},  

O%k(2)={F~O%k:hTEF}, o%k (3) = o%k (1) f-/o%k (2). 

Then o% = o% (0) U o%k (1) U O%~ (2), and o%k (0) N (o%k (1) U o%k (2)) = O. There- 

fore Io%k [= ]o%k (0)t + 1o% (1)i + [o%k (2) t -  Io% (3)I. In the same manner we define 

o%*(i) of O%~ (0_-< i <=3). It suffices to show that [o%k(0)l = Io%*(o)l, Io%k(1)[--= 

IO%*(2)1, Io%k (2)1 = IO%*(1)1 and Io%k (3)1 = I o%*(3)1. 
A 1-1 correspondence between o%k (0) and O%~ (0) is established as follows: For 

S C [ h l ,  h,_l], let S ' = { h i + h , _ l - i : i E S } .  S' is the reflection of S about 

the midpoint of the interval [hl, K 1]. For F C V(=[1 ,  v]) define F * =  

(F\[h, ,h,_,])U(FN[h~,h,_~]) ' .  Clearly I F * [ = I F [ ,  and J* is the set that 

corresponds to J in Definition 10.1 with respect to the sequence ( l* , - . . ,  l*) (i.e., 

YC* = f ( V , 2 m ) / J * ) .  If F C V \ ( J  U {h~-, h ;-}), then F* C V\ (J*  U {hi ~, h;-}), and 

~,(J U F ) =  ~,(J* U F*). (v(S) is the number of odd blocks of S.) Therefore 

F E  o%k (0) iff F* E O%~(0), hence I o%k (0)[ = [o%*(0)[. 

The equality I o%k (1)1 = I O%~(2)1 will be proved by induction on the parameters 

k, j, m, as follows: 

If k =0 ,  then Io%Z(2)l --1. Assume therefore k---1. Then 

Io%~(1)l-- I{F c V\J:FUJisafaceofqg(V,2m)and[Fl=k+landh~EF}[ 
=I{G c V \ ( J U { h ~ } ) : G  U J U { h ; }  is a face of ~ (V,2m)  and IGI = k}l 

= f i_ , (~(V,  2m)l(Y U {h ~-})). 
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By [1, Theorem 3.5], this is equal to 

f k _ , ( ~ ( V \ { h t ,  h,},  2(m - 1))/(J \{h,})) 
(,) 

= f, ,_,(m - 1 ; I , + 1 2 - 1 , 1 3 , . . . , l , _ , , l , . . . , / j ) .  

In a similar fashion we obtain 

] $;*(2)1 = h ,(m - 1;/,, l,-r,"" ", 13, 12 + I. - 1 , / .+ , , . . . ,  l,). 

By Theorem 10.3 with m, j replaced by m - 1 ,  j -  1, this is equal to 

(**) f~_,(m - 1, l, + 12-  1, l ._, , .  . . ,  13, l., l , + , , ' . . ,  l,), 

since min(/,,/~)=> (m - 1) - (j - 1)+ 2. 

By the induction hypothesis of the present lemma, (*) and (**) are equal. This 

shows that I~k(1)] = 1~*(2)1. The equality ]~k(2)l = I~*(1)l is proved in the 

same way. 

Finally, we show by induction on k, ], m, that Iffk (3)1 = 1~ ( 3 ) t .  Recall that 

z => 4, and note that there is nothing to prove unless k --- 2. As above, we obtain: 

l a~k (3)1 =/k-2(Cr ( V \{h ;, hi, h,_,, h ~}, 2(m - 2))/(J \{hi, h,_~})) 

= fk-2(m - 2; l~ + 12 - 1, 13," -,/.-2, l.-~ + I. - 1, l.+~, �9 �9 li), 

and similarly I ~*  (3)1 = fk-2(m - 2; It + l,_~ - 1, I~-2,.- ", l~, 12 + I. - 1, l~+, . . . ,  lj). 

The expressions obtained for ]~k (3)1 and 1~*(3)1 are equal by Theorem 10.3 

(with m, j replaced by m -  2, j -  2) and by the induction hypothesis of the 

present lemma. 

This concludes the proof of Lemma 11.1, and with it the proof of the main 

result of this paper, Theorem 7.2. 

12. Stability of the k-skeleton 

Suppose ~ = c r  where V = { 1 , . . . , v } ,  v = > 2 m + 2 ,  m = l ,  J is a 

separated ]-subset of V and 1 -- j _-< m. In part I we have seen that (for 2i < m and 

v > 2 m  +3) the isomorphism type of ~ determines the set J up to an 

isomorphism of the circuit C(V). One may ask what changes of the set J do not 

affect the (isomorphism type of the) k-skeleton of Y{, for a given value of k. In 

the sequel we shall give an answer to this question. The answer will have a 

certain formal resemblance to the corresponding result about the stability of the 

f-vector (Theorem 7.2). 

Since ~ is (m - ])-neighborly (for ] < m ) ,  skelm-j-lY/" is a complete 
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(m - k - 1)-complex on v - j vertices, and does not at all depend on J. Thus the 

above question is uninteresting for k < m - j .  On the other hand, it is known 

(unpublished result of the second author) that the combinatorial type of a 

simplicial d-polytope is determined by the type of its [d/2]-skeleton. Therefore 

we cannot expect anything of interest if k _-> [�89 - j)] = m - [�89 + 1)]. Thus the 

interesting range of k is m - j _-< k _<- m - [�89 + 3)]. 

If S C V\J, IS I <-- k + 1, then S E skelks( if[ no subset of S is a missing face of 

5( relative to V \J  (see [1, Lemma 2.2 and Definition 4.4]). Therefore, if 

5('= c~(V,2m)/J', where J '  is another separated j-subset of V, then a bijection 

~o : V\J---~ V\J '  induces an isomorphism between skelks( and skelks(' if[ for 

each subset M of V\J  with I M [ =  < k + 1, M is a missing face of 5( relative to 

V\J  itI ~0(M) is a missing face of 5(' relative to V\J'.  
The set V\J  splits into t( = v - 2 j )  chains R1 , ' - ' ,  R, (see [1, Definition 4.2 

and Lemma 4.3]), which we assume to be cyclically ordered in this order on the 

circuit C(V). Assume IR, I=r i  for l<_-i_-<t. Then E l m i r a = v - j ,  hence j =  

EI~ (ri - 1), v = E '~  (2r~ - 1). Note that the subset J of V is determined (up to 

an automorphism of C(V)) by the sequence rj,...,r,. The parameter m, 

however, is not determined by r~,. �9 r,, and any value j =< m -< �89 - 2) will do. 

Similarly, denote by R~,...,R', and r I , . . . , r ' ,  the chains of V\J '  and their 

respective lengths. 

The above considerations justify the notation 5(= qC(V,2m)/J = 
~ ( m ; r l , - . - ,  r,), 5 ( '=  c~(V,2m)/J'= ~ ( m ; r ' l , . . . ,  r',). 

The missing faces of 5( relative to V\J  are precisely all the unions of 

m - j  + 1 separated chains of V\J  (see [1, Definitions 4.2, 4.4 and Theorem 

4.5]). Now if M is a union of m - j  + 1 chains, then each chain appearing in the 

union is of length <_- I MI - (m - j). Equality is possible only if all the chains in 

the union except one are singletons. Therefore, if [M I _-< k + 1, then the lengths 

of the chains included in M are bounded by a, where a = k + 1 - (m - j). 

From the above discussion it follows that the following pair of conditions is 

sufficient for a bijection ~b : V\J---~ V\J '  to induce an isomorphism between 

skelks( and skelks(': 

(12.0.1) (a) I f S C  V \ J  andlSl<-_ot, thenS isachainof V\Jitt~b(S) 
is a chain of V\J'.  

(12.0.2) (b) If $1, $2 are chains of V\J  of length _-< a, then $1 and $2 

are adjacent (on C(V)) iff ~b(S~) and ~b(S2) are adjacent. 

The statement of the main result of this section (Theorem 12.1) requires the 

following definitions. 
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Let T = {1, . . . ,  t}. By C ( T )  we denote, as usual, the undirected graph with 

vertex set T and edges {1,2},{2,3},.- .,{t - 1, t},{t, 1}. For S C T, denote by (S) 

the subgraph of C ( T )  spanned by S. We regard the sequences R = {ri : i ~ T}, 

R '  = { r ' i : i E  T} as systems of weights on the vertices of the graph C(T) .  

We always assume that ri, r'~ are positive integers and that Z{r i : i  E T} = 

Y,{r'~ : I E T}. For a => I, define Ta (R)  = {i E T :  r~ =< a}. 

An a-equivalence between R and R '  is a weight-preserving isomorphism 

between the weighted graphs (T, (R)) and (T, (R')). In other words, a bijection 
: T~ ( R ) ~  T~ (R')  is an a-equivalence iff: 

(12.0.3) (a) r~ = r~c, ) for all i E T~(R),  

(12.0.4) (b) if i, j E T, (R), then i - ]  = - 1 (mod t) iff 

~ ( i ) -  q~(/) = __+ 1 (mod t). 

A necessary and sufficient condition for a-equivalence between R and R '  is 

the following: There is a (length-preserving) 1-1 correspondence (C~)---~(C'~) 

between the components of (T, (R)) and those of (T~(R')) ,  and for each (C~), 

there is an automorphism ~bi of C ( T )  which maps C~ onto C', and is weight- 

preserving on C~. (See example in Fig. 4, with a = 2 and t = 20.) 

From the above definition it follows that if R and R '  are a-equivalent,  then 

(*) I { i E T : r , > a } l = l { i E T : r ; > a } l  and 

(**) E{r~ : i E T, ri > a} = E{r'~: i E T,r'~> a}. 

THEOREM 12.1. Suppose 

~r = c~(V,2m)/J  = ~ ( m ; r l , . . . , r , ) ,  ~/"= c~(V,2m)/J '  = ~ ' ( m ; r [ , . . . , r ; ) ,  

where V = {1,. �9 v }, v >->_ 2m + 2, J and J' are ]-subsets of V, ] <- m, and each of 

them is separated in C(V) .  I f  the circular sequences R = (r~,. �9 r,) and R '  = 

( r[ , . . . , r ; )  are a-equivalent, then skelk~/ '~-skel ,~  ', where k = m ] l + a .  

PROOF. Let ~ : T ~ ( R ) ~  T ~ ( R ' ) b e  an a-equivalence between R and R' .  

For each i E T~ (R), choose an arbitrary bijection ~b~ : R~ ~ R~0~. Choose also a 

bijection ~b0 : U {R, : i E T, I R, I > a }---* U {R ~ : i E T, I R 'il > a }. (This is possible 

because of (**).)Finally, let ~b=~0U U{~b~ : i E T ~ ( R ) } .  Then ~b is a 1-1 

correspondence between V \ J  and V \ J ' ,  which satisfies conditions (12.0.1) and 

(12.0.2) (see (12.0.4)), and therefore induces an isomorphism between ske lk~  

and skelk ~/". [] 

EXAMPLE. Figure 4 shows a pair of 2-equivalent cyclic sequences R, R '  of 
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./ 

7 

2 5 

Fig. 4. 2-equivalence between R and R '  with t = 20, 

R' ] '5 

1 | 

$ 2 

four components and E~~ r, = E~l  r', = 40. 

length t = 20, with E~ ~ r~ = E~~ r'~ = 40. Each  of the graphs  (T2(R)),  (T2(R ')) has 

four  componen t s .  These  sequences  cor respond  to quot ients  ~ = ~(V,2m)/J, 
~, = c~(V, 2m)/J', where  [ V [ = v = 60, [J[ = [J ' [  = j = 20, and m can take any 

value be tween  20 and 29. For  each such choice of m, T h e o r e m  12.1 implies that  

ske l , ,_ ,9~  = s k e l , , _ ~ ' .  H o w e v e r ,  a direct  examina t ion  of ~ and Y/' for  m = 29 

reveals  that  ske lk~  r ~ s k e l ~  r '  even for  k = 18. 

The  p roof  of T h e o r e m  12.1 t ook  into cons idera t ion  the worst  possible  case, 

namely  that  a missing face of ~ may  consist of  m - j chains of length 1 and one  

long chain. T h e r e f o r e  if we assume that  there  are not too m a n y  sepa ra ted  shor t  

chains, then the conclusion of T h e o r e m  12.1 can be s t rengthened  as follows. 

Fix a ,  a _-> 1. Call a subset  U of T~ (R) separated, if no two points  in U are 

ad jacen t  in C(T). Define,  for  1 _-< x _-< m - j  + 1, Ix(x, R )  = min{E{r~ : i ~ U}:  U 

is a separa ted  (m - j  + 1 -  x) -subse t  of T~ (R)}. (If there  is no such set U, let 

tx (x, R ) = oo.) Def ine  also 

k ( R )  = min{(a + 1)x + Ix (x, R ) : 1 _-< x _-< m - j + 1} - 2. 

Note  that  if R and R' (={r'~:iET}) are a - equ iva l en t ,  then I x ( x , R ) =  

Ix (x, R ') and k ( R )  = k (R '). 

Le t  M be a missing face of  ~ relat ive to V\J. M consists of m - j  + 1  

sepa ra ted  chains. Suppose  x of  them are of length > a,  and the remain ing  

m - j  + 1 - x are of length _-< a.  T h e n  [M[  _-> (a  + 1)x + Ix(x, R) .  There fo re ,  if 

x > 0, then [ M [ _ -  > k(R)+ 2, and M does  not  affect the k(R)-skeleton of ~.  

The re fo re ,  if R and R '  are  a - equ iva l en t ,  and ~r=~g(m;rl,...,r,), ~r,= 
~ ( m ;  r ~ , . . . ,  r',), then ske l~C ~ s k e l k ~ '  for  k = k(R)= k(R'). 
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I f  r~>-c for  all i E T ,  and a _ > c - 1 ,  then i z ( x , R ) > = ( m - j + l - x ) c ,  and 

therefore  k ( R )  >- a + 1 + (m  - j ) c  - 2 = a + (m  - j ) c  - 1. If c = 1, this reduces 

to k ( R )  >- m - j  + a - 1, as in T h e o r e m  12.1. 

For  the example shown in Fig. 4, with m = 2 9 ,  we obtain p.(1, R ) = ~ ,  

~ ( x , R ) =  1 0 - x  for 2=<x =< 10, thus k ( R ) =  12. 
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